진리장학금 프로그램 연구 주제

지도교수	연구 제목	과제 설명 (상세)
고광일	복잡계 하이퍼그래프 이론 연습	복잡계 하이퍼그래프의 구조와 동역학 모형에 대한
		최신 이론을 공부하고 연습한다.
김민혁	루비듐 원자의 냉각 및 포획 실험	중성원자 양자시뮬레이터 플랫폼을 구축하기 위해
		루비듐 원자의 냉각 및 포획 실험을 진행한다. 원자
		포획을 위한 진공챔버 제작, 원자 큐비트 생성을
		위한 광집게 제작 등의 실험에 참여하며 원자 물리
		실험 경험을 쌓고 관련 이론을 습득한다.
원은일	대형 광증폭관 검출기 신호 읽기 실험 연구	지름이 20인치인 대형 광증폭관 검출기를 이용하여
		광자 신호를 읽어 내고 광증폭관 성질 파악을 하는
		연구를 진행합니다. 신호의 시간 정확도 및 지구
		자기장 영향을 최소화 하기 위한 연구를 진행하고
		이를 위하여 초고속 아날로그 신호 처리를 위한
		전자회로를 다루게 됩니다.
이경진	발화(spiking) 신경망 역학- 구조-기능 연구	1) 파브로브 학습을 이용한 발화-신경네트워크
		모델 기억형성 과정 연구;
		2) 대규모 신경세포 네트워크 발화 역학
		(oscillation) 모델 구현 및 제어 연구
		(*두 과제 모두 모델에 대한 전산 계산을 기반으로
		수행되며, Python 또는 C 유경험자 추천)
이동헌	큐비트 및 양자센싱 실험	고체 점결함 스핀 큐비트를 이용하여 ESR
		spectroscopy, Rabi oscillation, Ramsey
		interferometry 등의 큐비트 기초 제어 실험과
		DC 및 AC 자기장을 측정하는 양자센싱 실험을
		진행한다. 또한, 실험 매뉴얼과 녹화된 강의자료를
		바탕으로 양자정보 관련 기초적인 이론을 습득한다.
이상훈	자성체 박막의 스핀-궤도 필드 효과 측정	단결정 강자성반도체물질에서는 구조적 비대칭
		때문에 스핀-궤도 상호작용에 의해 움직이는
		전자가 스핀-궤도필드 (즉,자기장)을 느낀다.
		이 스핀궤도 필드를 측정하고 전류에 의한
		자화제어 방법을 실험하고, 홀 소자 제작,
		리소그래피 기술, 전자수송 측정을 수행한다.
	iSCAT 실험 기술을 이용한 gold nanorod의 3차원 운동 추적 연구	고감도 iSCAT 실험 장치를 이용해서 수십 nm
		금막대 입자의 확산 운동을 추적 관찰한다.
홍석철		비등방적인 산란(편광)을 통해 금막대의 방향을
		측정하고, 이를 통해 비등방 입자의 확산 현상을
		설명하며, 이를 브라운 운동과 비교함으로써,
		나노입자의 유체 내 확산 현상을 심층 탐구한다.