지도교수	연구 제목	과제 설명 (상세)
강세종	온도에 따른 초전도체의 전기저항변화 측정 및 플러스 알파	고온초전도체는 현대물리학의 미스테리이다. 온도를 상온에서 저온으로 서서히 감소시킬 경우 초전도체의 전기저항은 서서히 감소하다가 임계 온도부근에서 급격하게 0으로 떨어진다. 본 프로젝트에서는 고체시료의 온도를 서서히 감소시키면서 전기저항을 측정하고 그 특성이 자기장에 의해 어떻게 변화하는지 탐구할 것이다. 이와 별개로 물리학 실험에 공통적으로 필요한 시료제작, 인터페이스, 진공 및 저온 기술 등을 습득할 것이다.
고광일	복잡계 퍼콜레이션 모형 수치 계산 연구	복잡계 현상의 퍼콜레이션 모형의 상전이와 통계역학적 성질을 수치 계산 및 몬테카를로 시뮬레이션을 통해 확인한다.
안정근	COSMUS 우주선 검출기 설치와 특성 연구	하드론핵물리연구실(HANUL)에 설치 중인 우주선 뮤온 검출기 (COSMUS)는 길이 180 cm, 폭 20-30 cm 의 사다리꼴 단면을 가진 긴 플라스틱 검출기 24 개와 Csl 검출기 5x5 어레이를 비롯한 여러 검출기로 구성되어 있다. 원통형 COSMUS 검출기의 24 개 플라스틱 검출기를 이용하여 우주선 각분포와 비행시간을 측정하여 우주선 시뮬레이션 결과와 비교한다. 지구를 관통하여 오는 뉴트리노가 만드는 하늘로 솟아오르는 뮤온을 찾을 수도 있다.
	LAMPS TOF 검출기 특성 연구	연구실에서 대전 중이온가속기 RAON의 고에너지 실험동에 설치 중인 LAMPS 비행시간측정 검출기(BTOF/FTOF)의 시간 분해능 특성을 90Sr 베타선 표준선원과 우주선을 이용하여 측정하고 평가한다. BTOF는 길이 150 cm 폭 9 cm의 얇은 플라스틱 섬광제 46 개, FTOF는 길이 50 cm 폭 2.5 cm에서 9 cm의 사다리꼴의 얇은 섬광체 48 개로 구성되어 있다. 모두 여러개의 SiPM을 이용하여 입자가 남긴 섬광 신호를 읽는다.
원은일	Microchannel plate 검출기	약 50 ps 의 시간 분해능을 가진 초고속 검출기 특성 연구를 진행한다.
	Cherenkov 및 섬광 빛 시뮬레이션	섬광 물질에서 나오는 빛에 대한 시뮬레이션 연구를 진행한다.

지도교수	연구 제목	과제 설명 (상세)
윤태현	2 광자 레이저 연구	2 준위 원자의 공명 진동수에 대칭적인 비공명 진동수를 가진 2 개의 레이저를 광공진기의 모드에 공명시키면, 공진기내 2 준위 원자와 2 색 레이저가 상호작용해 새로운 Floquet 상태를 만들 수 있다. 이때 공진기 밖으로 나오는 광자는 2 광자 상태를 가질 것으로 예측되며, 새로운 공진기 Floquet 상태를 이용한 새로운 2 광자 레이저 원리를 연구한다.
	단일 광자를 이용한 파동-입자 이중성 및 시간 연산자 연구	2 개의 독립적인 단일 광자 발생 광원을 가진 단일광자 간섭계를 이해한다. 이 단일광자 간섭계로 단일광자의 파동-입자 이중성에 대한 보어의 상보성 원리를 연구한다. 또한 이 단일광자 간섭계를 활용해 최근에 이론적으로 제안된 시계 공간과 양자공간의 얽힌상태로 구성된 Page-Wootters 양자계에서 시간연산자에 대한 실험적 검증방법에 대해 연구한다.
이경진	강화학습 (reinforcement learning)을 위한 spiking neural network 디자인	강화학습은 기계학습의 가장 핵심이 되는 개념으로 많은 공학적 응용의 기본이 된다. 생물학적 신경망의 spiking 역학에 기반을 둔 강화학습 원리를 이해하고, 새로운 네트워크 아키텍쳐를 개발한다.
이동헌	양자센싱 연구 1 - 기초 양자센싱 실험	큐비트 기반의 양자센싱을 배워볼 수 있는 프로젝트. 다이아몬드 스핀 큐비트와 다양한 양자 측정 방법을 이용하여 자기장(dc and ac)을 센싱하는 연구 프로젝트임. 큐비트를 이용한 ESR Zeeman splitting 측정, dynamical decoupling 을 통한 ac 자기장 측정 등 다양한 양자센싱 실험방법들을 배우고 실습해볼 수 있는 프로젝트임.
	양자센싱 연구 2 - 응용 양자센싱	앙상블 스핀 큐비트를 이용하여 소형화된 자기 센서를 제작하고 모이 실험을 통해 테스트하는 프로젝트임. 실생활에 활용이 가능할 만한 주제를 발굴하고 토이모델/디오라마 제작과 자기장 센싱/이미징 테스트를 진행하는 프로젝트임.
이승준	우주암흑물질과 볼츠만 방정식	우주론에 대한 기본적인 지식을 쌓고, 우주암흑물질의 Thermal Freeze-out 메케니즘에 관해 연구하며, 구체적으로는 "cold relic"의 볼츠만 방정식의 솔루션을 구하는 연구를 수행한다.

지도교수	연구 제목	과제 설명 (상세)
이상훈	자성체 박막의 스핀-궤도 필드 효과 측정	단결정 강자성반도체물질에서는 구조적 비대칭 때문에 스핀-궤도 상호작용에 의해 움직이는 전자가 스핀-궤도필드 (즉,자기장)을 느낀다. 이 스핀궤도 필드를 측정하고 전류에 의한 자화제어 방법을 실험. 홀 소자 제작, 리소그래피 기술, 전자수송 측정을 수행한다.
	스핀 특성의 게이트 효과 측정	반도체 기반 강자성체는 자발자화가 형성되는 자기이방성 특성이 전하는 농도에 의존한다. 전하는 농도는 게이트에 의해 조절가능하므로 게이트에 따른 전자기 이송특성을 측정하여 주어진 시료의 자기이방성의 게이트 효과를 알아낸다. 강자성 박막에 홀 소자 제작 및 리소그래피 기술과 전자수송 측정 등의 연구 수행한다.
조동현	루비듐원자의 포화흡수분광	쓰기는 쉽지만, 주파수 안정도가 떨어지는 laser diode 에 회절격자를 결합해서 외부공진기형 다이오드 레이저를 제작한다. 이를 이용해서 vapor cell 안에 있는 루비듐 원자를 대상으로 포화흡수분광신호를 얻는다. 여기까지 성공하면, frequency modulation 과 lock-in detection 방식을 이용해서 레이저 주파수를 루비듐원자 전이선에 주파수잠금하는 실험을 시도한다.
최만수	Quantum Computation with Mathematica(R)	Mathematica(R)를 통해 양자컴퓨터를 시뮬레이션 한다. 다만, 단순한 흉내 내기가 아니라 컴퓨터에 양자계산 원리를 가르침으로써 스스로 배우는 과정이다. 더 상세한 정보는 https://me2.do/FDQxp1KO 참조.
	Designing and Simulating Superconducting Qubits	초전도 회로를 이용한 큐비트(양자 컴퓨터)의 기본 원리를 공부하여 가장 기본적인 수준에서 초전도 큐비트를 설계하고 그 성능을 시뮬레이션 해본다.
최원식	Solving inverse scattering problem using Python	Python을 이용해 산란매질 내부에 숨어있는 물체의 이미지를 찾아내는 역산란 문제(inverse scattering problem)를 풀어본다. 빛의 전파를 모사하는 모델(forward propagation model)을 구현하고, deep learning 에서 사용되는 최적화 툴을 이용해 모델을 실험데이터에 맞추는 것을 배운다.
	위상 현미경 구축 및 3 차원 이미지 구현 알고리즘 연구	위상 이미지를 획득할 수 있는 현미경 시스템을 구축해 보고, 측정한 데이터를 이용해 3차원 이미지를 구현할 수 있는 알고리즘을 배운다.

지도교수	연구 제목	과제 설명 (상세)
홍병식	중이온가속기 실험을 위한 중성자검출기의 특성	우리나라에 건설 중인 희귀 방사성 동위원소 가속기 RAON 에서 압축된 중성자별 물질을 연구하기 위해 LAMPS 검출장치를 건설 중이다. 이 실험에선 특히 중성자 검출이 중요한데 우리 연구실에서는 중성자검출기를 제작하고, 그들의 특성을 연구하고 있다. 중성자검출기 제작에 참여하고 검출기의 특성을 분석한다.
	CMS 중이온 충돌에서 웁실론 입자생성 분석	유럽핵입자물리연구소(CERN)의 최고에너지 가속기인 LHC 에서는 CMS 실험이 진행 중이다. CMS 는 양성자 충돌뿐만 아니라 무거운 핵들의 충돌도 가능하다. 무거운 핵 충돌을 이용하면 우주생성 직후 존재했던 최초의 물질인 쿼크-글루온 플라즈마(QGP)의 존재를 확인할 수 있다. 기존의 CMS 핵 충돌 데이터를 분석해 웁실론 입자의 생성을 확인하고 QGP 와의 관계를 배운다.
홍석철	광학집게 (Thorlabs optical tweezers) 만들기	Thorlabs 의 모듈화된 광학집게를 조립, 제작한다. 렌즈로 빛을 강하게 모아주면, 마이크론 크기의 구슬을 초점에 잡아놓을 수 있다. 이를 이용하여 DNA 사슬이 실처럼 붙어 있는 구슬을 당겨봄으로서, DNA 사슬 한 가닥(길이 5 마이크론, 폭 2 나노미터)을 고무줄을 당기듯 당겨볼 수 있다. 한 가닥의 DNA 에 걸리는 장력과 그 길이를 측정하여 DNA 의 탄성이 worm-like-chain 모델로 기술되는지 확인한다.
	간섭산란현미경 (iSCAT)을 이용한 나노 생체 분자의 극미한 질량 측정	나노 입자에 가시광선을 비출 때 얻는 극미한 광산란 신호를 iSCAT 기술을 이용하여 측정한다. 광산란 신호가 질량에 비례하는데, 이를 이용하여 10^(-18) g 질량의 생체 분자(예. 항체 IgM, DNA 오리가미, 리보솜)의 질량을 측정해보고, 그 원리를 배운다.